Key Publications

Most recent publications

click here for a list of all publications

Poly (ADP-ribose) polymerase: structure, function, mechanism

  1. Kellett, T., Noor, R., Zhou, Q., Esquer, H., Sala, R., Stojanovic, P., Rudolph, J., Luger, K. and LaBarbera, D.V. (2023) HTS discovery of PARP1-HPF1 complex inhibitors in cancer. SLAS Discov, 28, 394-401. https://doi.org/10.1016/j.slasd.2023.10.003
  2. Stojanovic, P., Luger, K. and Rudolph, J. (2023) Slow Dissociation from the PARP1-HPF1 Complex Drives Inhibitor Potency. Biochemistry. https://doi.org/10.1021/acs.biochem.3c00243
  3. Rudolph, J., Jung, K. and Luger, K. (2022) Inhibitors of PARP: Number crunching and structure gazing. Proc Natl Acad Sci U S A, 119, e2121979119. https://doi.org/10.1073/pnas.2121979119
  4. Rudolph, J., Jung, K. and Luger, K. (2022) Inhibitors of PARP: Number crunching and structure gazing. Proc Natl Acad Sci U S A, 119, e2121979119. https://doi.org/10.1073/pnas.2121979119
  5. Mahadevan, J., Jha, A., Rudolph, J., Bowerman, S., Narducci, D., Hansen, A.S. and Luger, K. (2023) Dynamics of endogenous PARP1 and PARP2 during DNA damage revealed by live-cell single-molecule imaging. iScience, 26, 105779. https://doi.org/10.1016/j.isci.2022.105779
  6. Rudolph, J., Roberts, G., Muthurajan, U.M. and Luger, K. (2021) HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase. Elife, 10. https://doi.org/10.7554/eLife.65773
  7. Rudolph, J., Roberts, G. and Luger, K. (2021) Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs. Nat Commun, 12, 736. https://doi.org/10.1038/s41467-021-20998-8
  8. Rudolph, J., Muthurajan, U.M., Palacio, M., Mahadevan, J., Roberts, G., Erbse, A.H., Dyer, P.N. and Luger, K. (2021) The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Mol Cell, 81, 4994-5006 e4995. https://doi.org/10.1016/j.molcel.2021.11.014

Machines on chromatin

  1. Rex, E.A., Seo, D., Chappidi, S., Pinkham, C., Oliveira, S.B., Embry, A., Heisler, D., Liu, Y., Luger, K., Alto, N.M., da Fonseca, F.G., Orchard, R., Hancks, D. and Gammon, D.B. (2023) A FACT-ETS-1 Antiviral Response Pathway Restricts Viral Replication and is Countered by Poxvirus A51R Proteins. bioRxiv, 2023.2002.2008.527673. https://doi.org/10.1101/2023.02.08.527673
  2. Zhou, K., Gebala, M., Woods, D., Sundararajan, K., Edwards, G., Krzizike, D., Wereszczynski, J., Straight, A.F. and Luger, K. (2022) CENP-N promotes the compaction of centromeric chromatin. Nat Struct Mol Biol, 29, 403-413. https://doi.org/10.1038/s41594-022-00758-y
  3. McCauley, M.J., Morse, M., Becker, N., Hu, Q., Botuyan, M.V., Navarrete, E., Huo, R., Muthurajan, U.M., Rouzina, I., Luger, K., Mer, G., Maher, L.J., 3rd and Williams, M.C. (2022) Human FACT subunits coordinate to catalyze both disassembly and reassembly of nucleosomes. Cell Rep, 41. https://doi.org/https://doi.org/10.1016/j.celrep.2022.111858
  4. Markert, J., Zhou, K. and Luger, K. (2021) SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nucleosome assembly activity. Sci Adv, 7, eabk2380. https://doi.org/10.1126/sciadv.abk2380
  5. Zhou, K., Liu, Y. and Luger, K. (2020) Histone chaperone FACT FAcilitates Chromatin Transcription: mechanistic and structural insights. Curr Opin Struct Biol, 65, 26-32. https://doi.org/10.1016/j.sbi.2020.05.019
  6. Liu, Y., Zhou, K., Zhang, N., Wei, H., Tan, Y.Z., Zhang, Z., Carragher, B., Potter, C.S., D’Arcy, S. and Luger, K. (2020) FACT caught in the act of manipulating the nucleosome. Nature, 577, 426-431. https://doi.org/10.1038/s41586-019-1820-0
  7. Mattiroli, F., Gu, Y., Yadav, T., Balsbaugh, J.L., Harris, M.R., Findlay, E.S., Liu, Y., Radebaugh, C.A., Stargell, L.A., Ahn, N.G., Whitehouse, I. and Luger, K. (2017) DNA-mediated association of two histone-bound complexes of yeast Chromatin Assembly Factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. Elife, 6. https://doi.org/10.7554/eLife.22799bower

Histones for all: chromatin organization in non-eukaryotic organisms

  1. Hocher, A., Laursen, S.P., Radford, P., Tyson, J., Lambert, C., Stevens, K.M., Montoya, A., Shliaha, P.V., Picardeau, M., Sockett, R.E., Luger, K. and Warnecke, T. (2023) Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nat Microbiol, 8, 2006-2019. https://doi.org/10.1038/s41564-023-01492-x
  2. Liu, Y., Bisio, H., Toner, C.M., Jeudy, S., Philippe, N., Zhou, K., Bowerman, S., White, A., Edwards, G., Abergel, C. and Luger, K. (2021) Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell, 184, 4237-4250 e4219. https://doi.org/10.1016/j.cell.2021.06.032
  3. Bowerman, S., Wereszczynski, J. and Luger, K. (2021) Archaeal chromatin ‘slinkies’ are inherently dynamic complexes with deflected DNA wrapping pathways. Elife, 10. https://doi.org/10.7554/eLife.65587
  4. Laursen, S.P., Bowerman, S. and Luger, K. (2020) Archaea: the final frontier of chromatin. J Mol Biol, 166791. https://doi.org/10.1016/j.jmb.2020.166791
  5. Rudolph, J. and Luger, K. (2020) The secret life of histones. Science, 369, 33. https://doi.org/10.1126/science.abc8242
  6. Mattiroli, F., Bhattacharyya, S., Dyer, P.N., White, A.E., Sandman, K., Burkhart, B.W., Byrne, K.R., Lee, T., Ahn, N.G., Santangelo, T.J., Reeve, J.N. and Luger, K. (2017) Structure of histone-based chromatin in Archaea. Science, 357, 609-612. https://doi.org/10.1126/science.aaj1849

Methods

  1. Zhao, H., Ghirlando, R., Alfonso, C., Arisaka, F., Attali, I., Bain, D.L., Bakhtina, M.M., Becker, D.F., Bedwell, G.J., Bekdemir, A. et al. (2015) A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation. PLoS One, 10, e0126420.
  2. Winkler, D.D., Luger, K. and Hieb, A.R. (2012) Quantifying Chromatin-Associated Interactions: The HI-FI System. Methods Enzymol, 512, 243-274.
  3. Andrews, A.J. and Luger, K. (2011) A coupled equilibrium approach to study nucleosome thermodynamics. Methods Enzymol, 488, 265-285.
  4. Subramanian, V., Williams, R.M., Boger, D.L. and Luger, K. (2010) Methods to characterize the effect of DNA-modifying compounds on nucleosomal DNA. Methods Mol Biol, 613, 173-192.
  5. Dyer, P.N., Edayathumangalam, R.S., White, C.L., Bao, Y., Chakravarthy, S., Muthurajan, U.M. and Luger, K. (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol, 375, 23-44.
  6. Luger, K., Rechsteiner, T.J. and Richmond, T.J. (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol, 119, 1-16.
  7. Luger, K., Rechsteiner, T.J. and Richmond, T.J. (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol, 304, 3-19.

Selected Reviews

  1. Mattiroli, F., D’Arcy, S. and Luger, K. (2015) The right place at the right time: chaperoning core histone variants. EMBO Rep, 16, 1454-1466.
  2. Kalashnikova, A.A., Porter-Goff, M.E., Muthurajan, U.M., Luger, K. and Hansen, J.C. (2013) The role of the nucleosome acidic patch in modulating higher order chromatin structure. J R Soc Interface, 10, 20121022.
  3. Earnshaw, W.C., Allshire, R.C., Black, B.E., Bloom, K., Brinkley, B.R., Brown, W., Cheeseman, I.M., Choo, K.H., Copenhaver, G.P., Deluca, J.G. et al. (2013) Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res, 21, 101-106.
  4. Luger, K., Dechassa, M.L. and Tremethick, D.J. (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol, 13, 436-447.
  5. Dechassa, M.L. and Luger, K. (2011) In Rippe, K. (ed.), In Genome organization and function in the cell nucleus. Wiley-VCH, Weinheim, Vol. in press.
  6. D’Arcy, S. and Luger, K. (2011) Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take? Current opinion in structural biology, 21, 728-734.
  7. Andrews, A.J. and Luger, K. (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys, 40, 99-117.
  8. Hansen, J.C., Nyborg, J.K., Luger, K. and Stargell, L.A. (2010) Histone chaperones, histone acetylation, and the fluidity of the chromogenome. J Cell Physiol, 224, 289-299.
  9. Dechassa, M.L., D’Arcy, S. and Luger, K. (2009) A positive spin on the centromere. Cell, 138, 22-24.
  10. Andrews, A.J. and Luger, K. (2009) Histone Modifications: Chemistry and Structural Consequences. Wiley Encyclopedia of Chemical Biology, 1, 275-284.
  11. Park, Y.J. and Luger, K. (2008) Histone chaperones in nucleosome eviction and histone exchange. Current opinion in structural biology, 18, 282-289.
  12. Park, Y.J. and Luger, K. (2006) Structure and function of nucleosome assembly proteins. Biochem Cell Biol, 84, 549-558.
  13. Luger, K. (2006) Dynamic nucleosomes. Chromosome Res, 14, 5-16.
  14. Chodaparambil, J.V., Edayathumangalam, R.S., Bao, Y., Park, Y.J. and Luger, K. (2006) Nucleosome structure and function. Ernst Schering Res Found Workshop, 29-46.
  15. Barbera, A.J., Chodaparambil, J.V., Kelley-Clarke, B., Luger, K. and Kaye, K.M. (2006) Kaposi’s sarcoma-associated herpesvirus LANA hitches a ride on the chromosome. Cell Cycle, 5, 1048-1052.
  16. Luger, K. and Hansen, J.C. (2005) Nucleosome and chromatin fiber dynamics. Current opinion in structural biology, 15, 188-196.
  17. Luger, K. (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev, 13, 127-135.
  18. Akey, C.W. and Luger, K. (2003) Histone chaperones and nucleosome assembly. Current opinion in structural biology, 13, 6-14.
  19. Luger, K. (2002) The tail does not always wag the dog. Nat Genet, 16, 16.
  20. Luger, K. (2000) Nucleosomes: Structure and Function. Encyclopedia of Life Sciences, els.net.
  21. Luger, K. and Richmond, T.J. (1998) The histone tails of the nucleosome. Curr Opin Genet Dev, 8, 140-146.
  22. Luger, K. and Richmond, T.J. (1998) DNA binding within the nucleosome core. Current opinion in structural biology, 8, 33-40.