Most recent publications
click here for a list of all publications
Poly (ADP-ribose) polymerase: structure, function, mechanism
- Kellett, T., Noor, R., Zhou, Q., Esquer, H., Sala, R., Stojanovic, P., Rudolph, J., Luger, K. and LaBarbera, D.V. (2023) HTS discovery of PARP1-HPF1 complex inhibitors in cancer. SLAS Discov, 28, 394-401. https://doi.org/10.1016/j.slasd.2023.10.003
- Stojanovic, P., Luger, K. and Rudolph, J. (2023) Slow Dissociation from the PARP1-HPF1 Complex Drives Inhibitor Potency. Biochemistry. https://doi.org/10.1021/acs.biochem.3c00243
- Rudolph, J., Jung, K. and Luger, K. (2022) Inhibitors of PARP: Number crunching and structure gazing. Proc Natl Acad Sci U S A, 119, e2121979119. https://doi.org/10.1073/pnas.2121979119
- Rudolph, J., Jung, K. and Luger, K. (2022) Inhibitors of PARP: Number crunching and structure gazing. Proc Natl Acad Sci U S A, 119, e2121979119. https://doi.org/10.1073/pnas.2121979119
- Mahadevan, J., Jha, A., Rudolph, J., Bowerman, S., Narducci, D., Hansen, A.S. and Luger, K. (2023) Dynamics of endogenous PARP1 and PARP2 during DNA damage revealed by live-cell single-molecule imaging. iScience, 26, 105779. https://doi.org/10.1016/j.isci.2022.105779
- Rudolph, J., Roberts, G., Muthurajan, U.M. and Luger, K. (2021) HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase. Elife, 10. https://doi.org/10.7554/eLife.65773
- Rudolph, J., Roberts, G. and Luger, K. (2021) Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs. Nat Commun, 12, 736. https://doi.org/10.1038/s41467-021-20998-8
- Rudolph, J., Muthurajan, U.M., Palacio, M., Mahadevan, J., Roberts, G., Erbse, A.H., Dyer, P.N. and Luger, K. (2021) The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Mol Cell, 81, 4994-5006 e4995. https://doi.org/10.1016/j.molcel.2021.11.014
Machines on chromatin
- Rex, E.A., Seo, D., Chappidi, S., Pinkham, C., Oliveira, S.B., Embry, A., Heisler, D., Liu, Y., Luger, K., Alto, N.M., da Fonseca, F.G., Orchard, R., Hancks, D. and Gammon, D.B. (2023) A FACT-ETS-1 Antiviral Response Pathway Restricts Viral Replication and is Countered by Poxvirus A51R Proteins. bioRxiv, 2023.2002.2008.527673. https://doi.org/10.1101/2023.02.08.527673
- Zhou, K., Gebala, M., Woods, D., Sundararajan, K., Edwards, G., Krzizike, D., Wereszczynski, J., Straight, A.F. and Luger, K. (2022) CENP-N promotes the compaction of centromeric chromatin. Nat Struct Mol Biol, 29, 403-413. https://doi.org/10.1038/s41594-022-00758-y
- McCauley, M.J., Morse, M., Becker, N., Hu, Q., Botuyan, M.V., Navarrete, E., Huo, R., Muthurajan, U.M., Rouzina, I., Luger, K., Mer, G., Maher, L.J., 3rd and Williams, M.C. (2022) Human FACT subunits coordinate to catalyze both disassembly and reassembly of nucleosomes. Cell Rep, 41. https://doi.org/https://doi.org/10.1016/j.celrep.2022.111858
- Markert, J., Zhou, K. and Luger, K. (2021) SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nucleosome assembly activity. Sci Adv, 7, eabk2380. https://doi.org/10.1126/sciadv.abk2380
- Zhou, K., Liu, Y. and Luger, K. (2020) Histone chaperone FACT FAcilitates Chromatin Transcription: mechanistic and structural insights. Curr Opin Struct Biol, 65, 26-32. https://doi.org/10.1016/j.sbi.2020.05.019
- Liu, Y., Zhou, K., Zhang, N., Wei, H., Tan, Y.Z., Zhang, Z., Carragher, B., Potter, C.S., D’Arcy, S. and Luger, K. (2020) FACT caught in the act of manipulating the nucleosome. Nature, 577, 426-431. https://doi.org/10.1038/s41586-019-1820-0
- Mattiroli, F., Gu, Y., Yadav, T., Balsbaugh, J.L., Harris, M.R., Findlay, E.S., Liu, Y., Radebaugh, C.A., Stargell, L.A., Ahn, N.G., Whitehouse, I. and Luger, K. (2017) DNA-mediated association of two histone-bound complexes of yeast Chromatin Assembly Factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. Elife, 6. https://doi.org/10.7554/eLife.22799bower
Histones for all: chromatin organization in non-eukaryotic organisms
- Hocher, A., Laursen, S.P., Radford, P., Tyson, J., Lambert, C., Stevens, K.M., Montoya, A., Shliaha, P.V., Picardeau, M., Sockett, R.E., Luger, K. and Warnecke, T. (2023) Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nat Microbiol, 8, 2006-2019. https://doi.org/10.1038/s41564-023-01492-x
- Liu, Y., Bisio, H., Toner, C.M., Jeudy, S., Philippe, N., Zhou, K., Bowerman, S., White, A., Edwards, G., Abergel, C. and Luger, K. (2021) Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell, 184, 4237-4250 e4219. https://doi.org/10.1016/j.cell.2021.06.032
- Bowerman, S., Wereszczynski, J. and Luger, K. (2021) Archaeal chromatin ‘slinkies’ are inherently dynamic complexes with deflected DNA wrapping pathways. Elife, 10. https://doi.org/10.7554/eLife.65587
- Laursen, S.P., Bowerman, S. and Luger, K. (2020) Archaea: the final frontier of chromatin. J Mol Biol, 166791. https://doi.org/10.1016/j.jmb.2020.166791
- Rudolph, J. and Luger, K. (2020) The secret life of histones. Science, 369, 33. https://doi.org/10.1126/science.abc8242
- Mattiroli, F., Bhattacharyya, S., Dyer, P.N., White, A.E., Sandman, K., Burkhart, B.W., Byrne, K.R., Lee, T., Ahn, N.G., Santangelo, T.J., Reeve, J.N. and Luger, K. (2017) Structure of histone-based chromatin in Archaea. Science, 357, 609-612. https://doi.org/10.1126/science.aaj1849
Methods
- Zhao, H., Ghirlando, R., Alfonso, C., Arisaka, F., Attali, I., Bain, D.L., Bakhtina, M.M., Becker, D.F., Bedwell, G.J., Bekdemir, A. et al. (2015) A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation. PLoS One, 10, e0126420.
- Winkler, D.D., Luger, K. and Hieb, A.R. (2012) Quantifying Chromatin-Associated Interactions: The HI-FI System. Methods Enzymol, 512, 243-274.
- Andrews, A.J. and Luger, K. (2011) A coupled equilibrium approach to study nucleosome thermodynamics. Methods Enzymol, 488, 265-285.
- Subramanian, V., Williams, R.M., Boger, D.L. and Luger, K. (2010) Methods to characterize the effect of DNA-modifying compounds on nucleosomal DNA. Methods Mol Biol, 613, 173-192.
- Dyer, P.N., Edayathumangalam, R.S., White, C.L., Bao, Y., Chakravarthy, S., Muthurajan, U.M. and Luger, K. (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol, 375, 23-44.
- Luger, K., Rechsteiner, T.J. and Richmond, T.J. (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol, 119, 1-16.
- Luger, K., Rechsteiner, T.J. and Richmond, T.J. (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol, 304, 3-19.
Selected Reviews
- Mattiroli, F., D’Arcy, S. and Luger, K. (2015) The right place at the right time: chaperoning core histone variants. EMBO Rep, 16, 1454-1466.
- Kalashnikova, A.A., Porter-Goff, M.E., Muthurajan, U.M., Luger, K. and Hansen, J.C. (2013) The role of the nucleosome acidic patch in modulating higher order chromatin structure. J R Soc Interface, 10, 20121022.
- Earnshaw, W.C., Allshire, R.C., Black, B.E., Bloom, K., Brinkley, B.R., Brown, W., Cheeseman, I.M., Choo, K.H., Copenhaver, G.P., Deluca, J.G. et al. (2013) Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Res, 21, 101-106.
- Luger, K., Dechassa, M.L. and Tremethick, D.J. (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol, 13, 436-447.
- Dechassa, M.L. and Luger, K. (2011) In Rippe, K. (ed.), In Genome organization and function in the cell nucleus. Wiley-VCH, Weinheim, Vol. in press.
- D’Arcy, S. and Luger, K. (2011) Understanding histone acetyltransferase Rtt109 structure and function: how many chaperones does it take? Current opinion in structural biology, 21, 728-734.
- Andrews, A.J. and Luger, K. (2011) Nucleosome structure(s) and stability: variations on a theme. Annu Rev Biophys, 40, 99-117.
- Hansen, J.C., Nyborg, J.K., Luger, K. and Stargell, L.A. (2010) Histone chaperones, histone acetylation, and the fluidity of the chromogenome. J Cell Physiol, 224, 289-299.
- Dechassa, M.L., D’Arcy, S. and Luger, K. (2009) A positive spin on the centromere. Cell, 138, 22-24.
- Andrews, A.J. and Luger, K. (2009) Histone Modifications: Chemistry and Structural Consequences. Wiley Encyclopedia of Chemical Biology, 1, 275-284.
- Park, Y.J. and Luger, K. (2008) Histone chaperones in nucleosome eviction and histone exchange. Current opinion in structural biology, 18, 282-289.
- Park, Y.J. and Luger, K. (2006) Structure and function of nucleosome assembly proteins. Biochem Cell Biol, 84, 549-558.
- Luger, K. (2006) Dynamic nucleosomes. Chromosome Res, 14, 5-16.
- Chodaparambil, J.V., Edayathumangalam, R.S., Bao, Y., Park, Y.J. and Luger, K. (2006) Nucleosome structure and function. Ernst Schering Res Found Workshop, 29-46.
- Barbera, A.J., Chodaparambil, J.V., Kelley-Clarke, B., Luger, K. and Kaye, K.M. (2006) Kaposi’s sarcoma-associated herpesvirus LANA hitches a ride on the chromosome. Cell Cycle, 5, 1048-1052.
- Luger, K. and Hansen, J.C. (2005) Nucleosome and chromatin fiber dynamics. Current opinion in structural biology, 15, 188-196.
- Luger, K. (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev, 13, 127-135.
- Akey, C.W. and Luger, K. (2003) Histone chaperones and nucleosome assembly. Current opinion in structural biology, 13, 6-14.
- Luger, K. (2002) The tail does not always wag the dog. Nat Genet, 16, 16.
- Luger, K. (2000) Nucleosomes: Structure and Function. Encyclopedia of Life Sciences, els.net.
- Luger, K. and Richmond, T.J. (1998) The histone tails of the nucleosome. Curr Opin Genet Dev, 8, 140-146.
- Luger, K. and Richmond, T.J. (1998) DNA binding within the nucleosome core. Current opinion in structural biology, 8, 33-40.